Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Vaccines (Basel) ; 10(9)2022 Sep 07.
Article in English | MEDLINE | ID: covidwho-2010357

ABSTRACT

The COVID-19 pandemic has been sweeping across the United States of America since early 2020. The whole world was waiting for vaccination to end this pandemic. Since the approval of the first vaccine by the U.S. CDC on 9 November 2020, nearly 67.5% of the US population have been fully vaccinated by 10 July 2022. While quite successful in controlling the spreading of COVID-19, there were voices against vaccines. Therefore, this research utilizes geo-tweets and Bayesian-based method to investigate public opinions towards vaccines based on (1) the spatiotemporal changes in public engagement and public sentiment; (2) how the public engagement and sentiment react to different vaccine-related topics; (3) how various races behave differently. We connected the phenomenon observed to real-time and historical events. We found that in general the public is positive towards COVID-19 vaccines. Public sentiment positivity went up as more people were vaccinated. Public sentiment on specific topics varied in different periods. African Americans' sentiment toward vaccines was relatively lower than other races.

2.
ISPRS International Journal of Geo-Information ; 11(1):13, 2022.
Article in English | MDPI | ID: covidwho-1580705

ABSTRACT

Many previous studies have shown that open-source technologies help democratize information and foster collaborations to enable addressing global physical and societal challenges. The outbreak of the novel coronavirus has imposed unprecedented challenges to human society. It affects every aspect of livelihood, including health, environment, transportation, and economy. Open-source technologies provide a new ray of hope to collaboratively tackle the pandemic. The role of open source is not limited to sharing a source code. Rather open-source projects can be adopted as a software development approach to encourage collaboration among researchers. Open collaboration creates a positive impact in society and helps combat the pandemic effectively. Open-source technology integrated with geospatial information allows decision-makers to make strategic and informed decisions. It also assists them in determining the type of intervention needed based on geospatial information. The novelty of this paper is to standardize the open-source workflow for spatiotemporal research. The highlights of the open-source workflow include sharing data, analytical tools, spatiotemporal applications, and results and formalizing open-source software development. The workflow includes (i) developing open-source spatiotemporal applications, (ii) opening and sharing the spatiotemporal resources, and (iii) replicating the research in a plug and play fashion. Open data, open analytical tools and source code, and publicly accessible results form the foundation for this workflow. This paper also presents a case study with the open-source spatiotemporal application development for air quality analysis in California, USA. In addition to the application development, we shared the spatiotemporal data, source code, and research findings through the GitHub repository.

3.
IEEE Access ; 9: 84783-84798, 2021.
Article in English | MEDLINE | ID: covidwho-1324871

ABSTRACT

In 2019, COVID-19 quickly spread across the world, infecting billions of people and disrupting the normal lives of citizens in every country. Governments, organizations, and research institutions all over the world are dedicating vast resources to research effective strategies to fight this rapidly propagating virus. With virus testing, most countries publish the number of confirmed cases, dead cases, recovered cases, and locations routinely through various channels and forms. This important data source has enabled researchers worldwide to perform different COVID-19 scientific studies, such as modeling this virus's spreading patterns, developing prevention strategies, and studying the impact of COVID-19 on other aspects of society. However, one major challenge is that there is no standardized, updated, and high-quality data product that covers COVID-19 cases data internationally. This is because different countries may publish their data in unique channels, formats, and time intervals, which hinders researchers from fetching necessary COVID-19 datasets effectively, especially for fine-scale studies. Although existing solutions such as John's Hopkins COVID-19 Dashboard and 1point3acres COVID-19 tracker are widely used, it is difficult for users to access their original dataset and customize those data to meet specific requirements in categories, data structure, and data source selection. To address this challenge, we developed a toolset using cloud-based web scraping to extract, refine, unify, and store COVID-19 cases data at multiple scales for all available countries around the world automatically. The toolset then publishes the data for public access in an effective manner, which could offer users a real time COVID-19 dynamic dataset with a global view. Two case studies are presented about how to utilize the datasets. This toolset can also be easily extended to fulfill other purposes with its open-source nature.

5.
J Pharm Pharmacol ; 73(9): 1137-1150, 2021 Aug 12.
Article in English | MEDLINE | ID: covidwho-1155796

ABSTRACT

OBJECTIVES: Isatis indigotica Fort. (I. indigotica) is an herbaceous plant belonging to Cruciferae family. Its leaf (IIL) and root (IIR) are commonly used in traditional Chinese medicines (TCMs) with good clinical efficacies such as clearing away heat and detoxification, cooling blood and reducing swelling. This review aimed to provide a systematic summary on the phytochemistry, pharmacology and clinical applications of I. indigotica. KEY FINDINGS: This plant contains alkaloids, organic acids, flavonoids, lignans, nucleosides, amino acids, and steroids. Previous pharmacological researches indicated that I. indigotica possesses promising antivirus, antibacterial, immunoregulatory, anti-inflammation, and cholagogic effects. Importantly, it can inhibit various viruses, such as influenza, hepatitis B, mumps, herpes simplex, cytomegalovirus, and coxsachievirus. Clinically, it is frequently used to treat various viral diseases like viral influenza, parotitis and viral hepatitis. Consequently, I. indigotica may be beneficial for the prevention and treatment of coronavirus disease 2019 (COVID-19). SUMMARY: This paper reviewed the chemical constituents, pharmacological effects and clinical applications of I. indigotica which may guide further research and application of this plant.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Isatis , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/immunology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Humans , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Medicine, Chinese Traditional/methods , Treatment Outcome
6.
Data ; 5(4):118, 2020.
Article in English | MDPI | ID: covidwho-970885

ABSTRACT

The outbreak of COVID-19 from late 2019 not only threatens the health and lives of humankind but impacts public policies, economic activities, and human behavior patterns significantly. To understand the impact and better prepare for future outbreaks, socioeconomic factors play significant roles in (1) determinant analysis with health care, environmental exposure and health behavior;(2) human mobility analyses driven by policies;(3) economic pressure and recovery analyses for decision making;and (4) short to long term social impact analysis for equity, justice and diversity. To support these analyses for rapid impact responses, state level socioeconomic factors for the United States of America (USA) are collected and integrated into topic-based indicators, including (1) the daily quantitative policy stringency index;(2) dynamic economic indices with multiple time frequency of GDP, international trade, personal income, employment, the housing market, and others;(3) the socioeconomic determinant baseline of the demographic, housing financial situation and medical resources. This paper introduces the measurements and metadata of relevant socioeconomic data collection, along with the sharing platform, data warehouse framework and quality control strategies. Different from existing COVID-19 related data products, this collection recognized the geospatial and dynamic factor as essential dimensions of epidemiologic research and scaled down the spatial resolution of socioeconomic data collection from country level to state level of the USA with a standard data format and high quality.

8.
Front Public Health ; 8: 587937, 2020.
Article in English | MEDLINE | ID: covidwho-890358

ABSTRACT

The global covid-19 pandemic puts great pressure on medical resources worldwide and leads healthcare professionals to question which individuals are in imminent need of care. With appropriate data of each patient, hospitals can heuristically predict whether or not a patient requires immediate care. We adopted a deep learning model to predict fatality of individuals tested positive given the patient's underlying health conditions, age, sex, and other factors. As the allocation of resources toward a vulnerable patient could mean the difference between life and death, a fatality prediction model serves as a valuable tool to healthcare workers in prioritizing resources and hospital space. The models adopted were evaluated and refined using the metrics of accuracy, specificity, and sensitivity. After data preprocessing and training, our model is able to predict whether a covid-19 confirmed patient is likely to be dead or not, given their information and disposition. The metrics between the different models are compared. Results indicate that the deep learning model outperforms other machine learning models to solve this rare event prediction problem.


Subject(s)
COVID-19 , Pandemics , Hospitals , Humans , Machine Learning , SARS-CoV-2
9.
PLoS One ; 15(10): e0240348, 2020.
Article in English | MEDLINE | ID: covidwho-868676

ABSTRACT

Coronavirus disease 2019 (COVID-19) was first identified in December 2019 in Wuhan, China as an infectious disease, and has quickly resulted in an ongoing pandemic. A data-driven approach was developed to estimate medical resource deficiencies due to medical burdens at county level during the COVID-19 pandemic. The study duration was mainly from February 15, 2020 to May 1, 2020 in the U.S. Multiple data sources were used to extract local population, hospital beds, critical care staff, COVID-19 confirmed case numbers, and hospitalization data at county level. We estimated the average length of stay from hospitalization data at state level, and calculated the hospitalized rate at both state and county level. Then, we developed two medical resource deficiency indices that measured the local medical burden based on the number of accumulated active confirmed cases normalized by local maximum potential medical resources, and the number of hospitalized patients that can be supported per ICU bed per critical care staff, respectively. Data on medical resources, and the two medical resource deficiency indices are illustrated in a dynamic spatiotemporal visualization platform based on ArcGIS Pro Dashboards. Our results provided new insights into the U.S. pandemic preparedness and local dynamics relating to medical burdens in response to the COVID-19 pandemic.


Subject(s)
Coronavirus Infections/epidemiology , Health Care Rationing/statistics & numerical data , Health Resources/statistics & numerical data , Pneumonia, Viral/epidemiology , Spatio-Temporal Analysis , COVID-19 , Coronavirus Infections/economics , Cost of Illness , Humans , Pandemics/economics , Pneumonia, Viral/economics , United States
11.
Non-conventional | WHO COVID | ID: covidwho-693531

ABSTRACT

The COVID-19 viral disease surfaced at the end of 2019 and quickly spread across the globe. To rapidly respond to this pandemic and offer data support for various communities (e.g., decision-makers in health departments and governments, researchers in academia, public citizens), the National Science Foundation (NSF) spatiotemporal innovation center constructed a spatiotemporal platform with various task forces including international researchers and implementation strategies. Compared to similar platforms that only offer viral and health data, this platform views virus-related environmental data collection (EDC) an important component for the geospatial analysis of the pandemic. The EDC contains environmental factors either proven or with potential to influence the spread of COVID-19 and virulence or influence the impact of the pandemic on human health (e.g., temperature, humidity, precipitation, air quality index and pollutants, nighttime light (NTL)). In this platform/framework, environmental data are processed and organized across multiple spatiotemporal scales for a variety of applications (e.g., global mapping of daily temperature, humidity, precipitation, correlation of the pandemic to the mean values of climate and weather factors by city). This paper introduces the raw input data, construction and metadata of reprocessed data, and data storage, as well as the sharing and quality control methodologies of the COVID-19 related environmental data collection.

SELECTION OF CITATIONS
SEARCH DETAIL